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Numerical determination of the parameters 
of Krupkowski's function for a torsion 
test taking into consideration the strain 
hardening ranges 
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A method has been proposed for determining the parameters of a function describing the 
strain hardening curve for a torsion test taking into consideration the strain hardening 
ranges. Certain measures for the approximation quantity have been defined by means of 
which it is possible to formulate the criterion of the occurrence of these ranges. Experi- 
mental verification of the method was carried out using nickel of 99.95% purity. Test 
pieces of a circular cross-section were subjected to a torsion test at ambient temperature 
without taking into consideration the strain hardening rate. 

Nomenclature 
r(TR) shear stress o f  the metal deformed 

up to 7R. 
7R shear strain at a distance R from 

the centre of  the test-piece. 
d diameter of  the test-piece under- 

going torsion, d = 2R. 
l length of  the test-piece. 

o~ angle of  torsion. 
M torsion moment.  

7 ~ ; k; m; e material parameters. 
a effective stress. 

1. I ntroduction 
The results o f  a torsion test are generally inter- 
preted on the basis o f  Duguet's formula [ 1 ] 

1 + 7R (1) T(,),R) -- 2rrR 3 

where 
Ra[ rad]  

7R - - - - ~  
l 

In result, when describing the deformatlon geo- 
metry by a scheme as in Fig. 1, we obtain the 
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z measure o f  deformation in form 
of  actual cold work. 

z I initial deformation equivalent of  
latent cold work. 

dL ~ the elementary work of  deforma- 
tion per unit of  volume. 

7i/i i  boundary between the strain hard- 
ening ranges I and II. 

7 i i / m  boundary between the strain hard- 
ening ranges II and III. 

A; H; S; SS; B approximation quantity measures 
described in the Section 3. 

characteristics of  the examined metal in the form 
of  a strain hardening curve. 

Krupkowski [2] proposed a different approach 
to this problem, and he suggested that the strain 
hardening process in the torsion test should be 
interpreted by means o f  the dependence 

r = c k [ 1 - - e x p ( - - C T i ) ]  ra (2) 

where 7i = 71 + 7. This function contains the 
material parameters: 3,1 ; k; m; c, to which physical 
meaning is ascribed. 
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Figure I The assumed strain hardening model of a test-piece subjected to torsion. 

When formulating Equation 2 Krupkowski also 
assumed the deformation geometry shown in 
Fig. 1, and next he adopted the concept that the 
deformed metal is characterized by  two properties 
which are determined by the extrapolat ion of  the 
strain hardening curve: ~.1 = ck  [ 1 --  exp (--  c3`1)] m 
for 7i = 3 '1 (i.e. for a latent value) and rma~ = ck 

for 3`-~ ~ .  The parameter m in this case indicates 
the capacity for the strain hardening of  the metal. 

It should be noted that  Equation 2 has been 
derived from Krupkowski 's  formula [3] 

o = k[z  1 + (1 - - z l ) z ]  ~ (3) 

based on the deformation measures z established 
on the basis of  the principle of  an identical unit 
work of  plastic deformation dL ~ , thus: 

for torsion z = 1 --  e -c'/i 

A 
for tension z = 1 - - - -  

Ao 

Ao 
for compression z = 1 - - - -  (4) 

A 

where Ao ,  A denote the initial and final cross- 
section of  the test-piece. 

The above dependencies are valid for the case 
when the deformation of the metal is homo- 
geneous. 

When analysing Equations 2 and 3 it can be 
seen that if c =  "c/o= constant,  then with in- 
creasing z the parameters k and m retain the 
same meaning. Thus we may adopt  the concept 
[4] that the unit hardening work 

dL~ = --  kzr~ d In (1 --  zi) (5) 

where z i = z l +  ( 1 - - z l ) z  does not depend on 
the deformation method and is characteristic 
for the given metal.  As a result when applying 
Equations 2 and 3 it is possible, basing on the given 
torsion, tension and compression tests to deter- 
mine one curve for the strain hardening of  the 
metal . '  

W e  mus t  remember that Equation 2 is a rela- 
t ion which is valid at a definite shear strain rate 
~/i and temperature T of  the deformation of  the 
metal,  to which there corresponds a certain 
intersection of  the hypersurface of  the plastic 

state r =  r(3`i, 3'i, T) for T = constant,  and g/i : 

constant (Fig. 2). 
This function has already been developed by 

other authors and new terms have been added 
which take into consideration also the effects of  
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Figure 2 Surface scheme of plastic state in case of gener- 
alized Krupkowski's function. 
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T and q. The present publication, however, is 
restricted to the discussion only of the effect of  
deformation. 

Investigations of the strain hardening of various 
metals have shown that within a wide range of 
deformations the nonhomogeneous deformation 
is the prevailing one, and consequently, the strain 
hardening curves should be separated into ranges 
in which the material parameters retain constant 
values [5, 6]. 

Thus, independently of the above quoted 
parameters, when discussing the torsion tests, it 
is necessary to determine two additional para- 
meters, namely the boundaries between the strain 

hardening ranges: 3'1/11; 3'111111. This is not an easy 
task, especially when dealing with the results of a 
torsion test of  a solid test-piece where metal cores 
belonging to different strain hardening ranges, 
which undergo simultaneous deformation, occur 
[7, 8]. Consequently, when interpreting the tor- 
sion by means of Equation 2 we must solve the 
following problems: 

(a) establish the criteria for the occurrence of 
the ranges, 

(b)provide the method of determining the 
boundaries between the ranges, 

(c) provide the method of determining the 
values of  the parameters: k; c; 3'1 ; m within 
the particular ranges. 

Moreover, there arises the question whether the 
values of  all the determined parameters within 
the particular ranges should be different. 

Basing on [9] it has been assumed in this paper 
that the value of the parameter 3'1 is characteristic 
for the initial state of the metal, and thus it 
remains constant over all the ranges. 

The principal aim of this publication is to 
present the method proposed for the solution 
of the problems mentioned as items (a) to (c) 
above. It consists of a very accurate approximation 
of experimental data based on the generalized 
least squares method, the rectangles of the measure- 
ment errors and the accuracy of the related 
original measurements. These considerations were 
the basis for the elaboration of an appropriate 
digital computer program which was used to carry 
out the first calculations. 

2. Formulating the problem 
According to the results presented in [1] the 
relation between the torsion moment of  a solid 
test-piece with a circular cross-section M = M ( a )  

and the shear stress r = r(r, a) can be described 
by the formula 

~d/2 

M(a) = 27r J [o r2 r(r, a) dr (6) 

where ot is the gngle of torsion measured in degrees, 
and r is the radial coordinate (Fig. 1). 

r(r ,a)  = ck 1 - - e x p  - r  l q l x  180 ~ 

(7) 

If in Equation 6 we substitute r = xd/2, where 
x E [0, 1], and next assume the notation 

nda ~(3') = 4M(a) 
3' - l • 360 ~ ' rrd3 (8) 

then we shall obtain 

2t4(7) = ek (1 x2{1 _ exp [-- e(7 '  + xy)]} m dx 
J O  

(9) 
The above formula defines the form of a func- 

tional relationship between the quantities 3' and 
37I(3') and in this way between the direct results of  
measurement of (ai,Mj) ] = 1,2 . . . . .  n and it will 
constitute the starting point for a detailed formu- 
lation of the programme. 

While a test-piece is undergoing torsion the 
quantities: d, l, (aj, Ms) are determined by direct 
and independent measurements. The measurement 
errors of  d, l, a i are constant and equal Ad, Al and 
Aa, respectively. The measurement error of M s 
equals s%, hence AMj = 0.01sMj. Knowing Ad, Al, 
Aa, AJl//j we can make use of Equation 8 and of 
the law of the propagation of error and calculate 

For simplicity of description let us introduce the 
following notation: 

co i = (z~/~]) -2 , Xj = (d,l,c~j,Mj). (10) 

In case of a single strain hardening range our 
problem can be formulated as follows: having a 
series of  points (3'j, J~rj)] = 1,2 . . . .  , n and the 
function 

1 3 2 5  



U(a,b,c,k,m, 3"l , 3") = U(a,b,X, 3"l , 3") 

Y2 = ck x2{l --exp[--c(71 +x3")l}mdx 

( l l )  

find such values of  the parameters (ci, kx, mi, 3'I) = 
(X I, 3'~) that the function 

Fx, n(X, 3" 1) = ~ oai[M j --U(O, 1,X,3' 1 ,T/)] 2 
1 

reaches its global minimum at the point (XI, 7~). 
Substituting in Equation 11 : a = O, b = 1, (c, k, 
rn, 3") = (ex, ki, mi, 3'~) we shall obtain a function 
describing the strain hardening process in the 
metal, for which a single strain hardening range has 
been derived. 

Let (3'p,)l~rp) be one of the points (Tj,/14s'). By 
establishing the point (Tp, M,,) we have divided 
the series of the points (Tj, Mi) into two ranges: 
the first composed of the points (3% Mj)/_'= 
1 . . . . .  p, the second - of the points (3"j, M j) 
] = p + l  . . . . .  n .  

If for a given metal we introduce two strain 
hardening ranges, then the value of all the para- 
meters and the boundary between the ranges will 
be determined in the following sequence: for the 
initial p points we find the values of the para- 
meters (cp, kp, mp, 71) = (Xp, 3"~) for which the 
function FI,p(X, 3'1) attains its minimum. 

Within the second range the core of the test- 
piece, the diameter of which changes with the 
change of 3' and is equal to d3,p/3"j [3] becomes 
hardened according to the laws valid in the first 
range. For this reason before determining the 
strain hardening parameters within the second 
range we must calculate the values M~,i = M J -  
U(O, Tp/3"j, Xp, @, 7i) where ] = p + 1 . . . . .  n. 

Subsequently, for the series of the points 
(3'j, AIl, j) ] = p  + 1 , . . .  ,n we find such values 
of (c,, kn, mn) = Xn for which the function 

F,,.,,n(X) = E ~oiNl, j 
p + l  

X i 2 - 6r(3'~,/3'~, 1, , 3'~, 7~)] 

attains its minimum. 
In the end we determine p = fi for which the 

function 

F(p) = Fl, p(Xp, 7~) + F~+l,n(Xn) 

attains its minimum. 

Denoting XI = (c#, k#, m#), 71 = @, XII = 
(Cn, kn, ran) 3'I/II =%ff we can write down the 
function describing the strain hardening process 
of the metal for which two strain hardening 
ranges have been derived, in the following form: 

u(o, 1, x~, y1,7),  ~e[0, 7rex] 

U(O, 3"uH/'r, x~, v l  , "r) 

~( 'r)  = + U(3"~m/3", l, x u ,  3"I, 3"), 

7e [3'm~, ~-] (12) 

By establishing two points (3'p, 21~rp), (3'q, Jl4q) 
from the series (3'i,/14]), l < p < q < n, we divide 
it into three ranges; the first, composed of the 
points (Tj,Mj)] = 1 , . . . ,  p; the second, composed 
of the points (~'s, 21~rj) ] = p + 1 , . . . ,  q; the third, 
of the points (3'i, 214i) ] = q + 1 . . . . .  n. 

If for a given metal there are introduced three 
strain hardening ranges, then, when discussing the 
first two ranges, we proceed analogously as in the 
case of two ranges, described above. Here we 
obtain the quantities: (Xp, @), Xa, Fl, p(Sp, 7 1) 
and Fp+l,q(Xq). 

Within the third range, besides the core of the 
test-piece which becomes hardened according to 
the laws valid over the first range, we must take 
into consideration the layer whose thickness is a 
function of 3' [3] becoming hardened according 
to the laws valid over the second range. Hence, 
before determining the strain hardening para- 
meters in the third range we shall calculate the 
value s: 

& , j  = ~.,,j -g(3",,hj ,  3"~/'rj,x~, %,'r j),  
j = q + l  . . . . .  n. 

Next, for the series of points (3'],k12,j) we find 
such values of the parameters (c,, kn, mn) = Xn 
for which the function 

II 

F~+,,,,(X) = T. ~oj [ & j  
q + l  

--U(Tq/3"j, 1,X,@,Tj) ]  = 

attains its minimum. 
To determine the boundaries between the 

ranges we find such p =/~ and q = c7 for which the 
function 

F(p, q) = Fl, p(Xp, 7~) + Fp+l,q(Xq) 

+ _F,,+I,,,(x,,) 
attains its minimum. 
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Denoting X I = (c~, k~, ms) ,  3`J = @ ,  Xli  = 
(C~, k~, /*/~), 3`I/II = 3`~ff, XIII = (Cn, kn ,  rrln), 
" ) ' I I / I I I  = ")'~ we can express the function describ- 
ing the strain hardening process of  the metal for 
which three strain hardening ranges have been 
derived in the following form: 

~(~,) = 

U(0, 1 ,XI ,  3  ̀} , ")'), 3`e [0, 3`i/ii ] 

g (0 ,  ')'I/II/3`, XI, 3`I, 3`) 

+ U('TI/II/3` , 1, Xii  , 3`~, 3̀ ) 

3'e [TI/II, 3`II/III] 

V(O, 3`I/II/3`, XI,  3`1,3`) 

+ U("[I/II/3`, "/II/III/3`, XII ,  3`I , 3`) 

+ U(3`II/III/3`, 1, XIII ,  3`~, 3`), 

7 e ['YII/III, ")In]' (13) 

3. Approximation quantity measures 
Let us denote: 3 ' 7 = T j + A T j ,  77=Tj--ATj,  
: o ;  = + &-: & - M F  : 

where / = 1 . . . .  , n. Depending on the fact whether 
one, two or three ranges are introduced, the 
function/l~(3'j) is defined by Equation 11, 12 or 
13, respectively. 

A rectangle R s with the vertices (3`~-, /~r 
(3'7, ~ - ) ,  (3`7, 21~J+), (3'7, M r )  (Fig. 3) is called 
the error rectangle. 

The approximation quantity measures pre- 
sented below of  the points (3`i, ~Tri) by means of  
function A7I(3`) are helpful in making the decision 
whether for the given metal we should introduce 
one, two or three strain hardening ranges. 

(a) Function 

E(3`j) = min (]l~j + --37r(3`f), 3}(77) --21~7) 

The values of  this function inform us about 
the position of  the curve of  the function/17/(3, ) 
with respect to the error rectangle Rj. I f  E(3`;) ~> 0 
it means that the curve of  the function 37r 
intersects the error rectangle Rj, whose shifting 
upwards or downwards by E(7/) does not affect 
this property (Fig. 3). 

(b) Percentage index of  the number of  measure- 
ment points the error rectangles of  which are dis- 
connected from the diagram of  the function3-ir(3, ) 

100 n 
H = ~ L ( l  - sgn E(3`j)) 

1 

M/' .~Mg-  

"i? 
Figure 3 A scheme of the denotations of an error rec> 
angle relating to the strain hardening curves (a) and (b). 

If  H =  0 it means that the curve of  the function 
Jl~(7 ) intersects the error rectangles of  all the 
measurement points. 

(c) The mean approximation error is 

100 n l/l/7 _]l~j I 

and the mean measurement error is 

100 n - ZXMj 
B =  n )-i", ~rj 

By comparing the values of  A and B we shall 
obtain the complete information about the 
approximation quantity. 

(d) Various statistics tests, e.g. X 2 test for the 
quantity SS or the series test for M 7 --21~j where 
by SS we have denoted the following sum 

s s  : oo ,  - j 
1 

To solve the problems presented above and to 
enumerate the discussed approximation quantity 
measures a program for a digital computer  has 
been prepared. To determine the function mini- 
mum the MINUITS program has been applied. 
E.g. for n = 57 ,p  = 12,q = 35 all the calculations 
took up about 20 sec of  the central processor 
(CP) operation of  the digital computer CYBER 70. 

4. Experimental investigations 
The above presented method has been verified by 
way of  example on the strain hardening of  nickel 
of  99.95% purity. This metal was used to produce 
test-pieces r 1 0 m m x  20ram,  which before the 
torsion test, were.subjected to heat treatment at 
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T A B L E  I 

Shear strain on the ranges boundary Measures 

A H S SS B 

with 7II/III = 2.4875 

wffhTi~i  = 0.3885 

7I/II 
0.3111 0.3427 8.7719 0.9561 42.966 
0.3885 0.3340 3.5088 0.8990 37.985 
0.5042 0.3862 3.5088 1.0221 49.103 

3'II/III 
2.2687 0.3306 3s 0.8902 37.246 
2.4148 0.3253 3.5088 0.8822 36.575 
2.5603 0.3522 8.7719 0.9453 42.000 

0.8113 

recrystallization temperature to obtain a homo- 
geneous grain size of  45 / lm.  During the torsion 
test 57 measurement points were registered within 
the range 10 ~ ~< a ~< 720 ~ the experimental con- 
ditions securing the following accuracies: 

Ad = 0.01 [mini Aaj  = 2 [o] 

Al  = 0.1 [ram] AMj = 0.5 [%] 

The above data enabled determination of  the magni- 
tude of  the rectangles of  the measurement errors. 
The test was carried out on a testing machine at an 
angle of  twist rate & = 19 [~ 

At the beginning the approximation of  the 
strain hardening curve with two ranges was con- 
sidered. The approximation quality measures were 
as follows: 

H = 47.3684 

A = 0.7998 

SS = 232.245 

Thus we found it necessary to introduce the 
separation into three ranges. In that  case a very 
good approximation was obtained: 

H = 1.7544 '}'I/II = 0.5042 

A = 0.2156 with 
7II/III  = 1.9747 

SS = 18.932 

and 

ci = 2.8523 

ci i  = 1.2919 

CIII = 0.0597 

The values of  the parameter c calculated in that  
way are not just if ied from the physical point o f  
view and the differences in the values are respon- 
sible for the fact that with a continuous increase 
of  3' the deformation measure z is discontinuous. 
Thus with further calculations we decided to 
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determine only one value of  the parameter c for 
the entire strain hardening curve under consider- 
ation. 

Repeated calculations with this assumption 
helped to state that the best approximation is 
obtained for c = 0.74 and then: 

H =  3.5088 

A = 0.3173 

SS = 33.108 

It has also been found that  the values of  7IlII = 

0.3885, 3 " i i / i i i = 2 . 4 1 4 8  remain constant for 
0.4 ~< c ~< 0.8. Table I presents the procedure 

(for c = 0.58) which has been used when deter- 

mining the boundaries 71/11,7Ii/111- 
Let us note that  the derived value c = 0.74 

may appear doubtful  from the point o f  view of  
the theory of  plasticity. With this in mind the 
experimental data from the torsion test have 
been recalculated taking into consideration, 
besides the approximation quality criterion, also 
a criterion of  analogous process of  a unit harden- 
ing work in the compression and torsion tests [2] .  
The corresponding results are given in Table II. 

In that  case a worse but still "correct  approxi- 
mat ion"  of  the torsion test results has been 
obtained,  where: 

H = 7.0175 

A = 0.3385 and B = 0.8113 

SS = 35.901 

the material parameters from the torsion and 
compression tests showing satisfactory agree- 
ment.  In Fig. 4 theoretical  lines have been drawn 
which correspond to the equations containing 
the material parameters given in Table II. 



o' 
xIO(MN m "z) 

A2 
xIO(MN m "z ) 

I 
o=f(z) j 

~/JP:e(yI 
I f i / : M  

f I I 

h ~ 

i k 

@/@~i i p I i 

0 a5 1:o 
01~ ' " 0.20 

@ 

I 

I 

t 
I Ni 
I 

t 

=J 

1.5 2J3 2.5 3~ 4.,.5 
63o oio o.'5o 0.6o 

i 

I I 

j 

I F 
l i 
i i 

i ~  | 
: I 

t i 

t.~) y. 
0.70 0~a0 Z 

Figure 4 Strain hardening curves for nickel: 1 - from a torsion test in the system 3,,~ r against the measurement points, 
2 - from a compression test in the system z, er, 3 - from a torsion test recalculated onto the systems z, o for c = 0.51. 

5 .  C o n c l u s i o n s  
1. The proposed method enables to determine 

in an unambiguous way all the parameters of 
Krupkowski's function (Equation 2). It is espec- 
ially useful for an analysis of the occurrence of 
the strain hardening ranges and the determin- 
ation of the corresponding boundaries. 

2. When investigating the strain hardening 
of nickel it has been found that the parameter 
c assumes physically justified values if, when 
determining its value, additional data o = f ( z )  

obtained from another test are taken into con- 
sideration. 

3. Recalculations of  the above data have 
shown that if the parameter c is determined 
from the criterion of an analogous strain hard- 
ening process in the torsion and compression 
tests, the values of the other parameters in both 
these tests are similar. 

4. The relationship rio determined in this 
way for the investigated metal was 0.51, thus 
it corresponds to the Tresci criterion. 

T A B L E  I I  

Material Torsion test 

parameter Strain hardening range 

I II III  

Compression test 

Strain hardening range 

I II III  

k X 10 MN m -2 
m 

.),l 
g 1 

c 

"YI/II; ")'II/III 
zI/II ;  ZlI/III 

10157 75.36 92A9 
0.5076 0.3336 0.8657 

0.0207 
(0~105)  
0.51 

0.3885 2.4148 
(0.1797) ~ .7082)  

92.62 
0.4623 

77.41 90.75 
0.3670 0.9037 

- -  0.0005 

0 , 1 4 3 0  0 . 7 4 0 1  
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